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Abstract. Employing a phenomenological long-wavelength approach recently developed, both acoustic and
optical phonons in nonpolar heterostructures are studied. Phonon modes in an arbitrary direction can be
calculated without additional effort respect to high symmetry directions. A simple analytical expression
for the dispersion relation in superlattices guides the physical discussion. We apply this to the calculation
of phonon modes in unstrained short period isotopic Ge superlattices, in quantum wells and in strained
short period Si/Ge superlattices. We find very good agreement with the results of other, more elaborated
and costly calculations.

PACS. 63.20.Dj Phonon states and bands, normal modes, and phonon dispersion – 63.22.+m Phonons
or vibrational states in low-dimensional structures and nanoscale materials – 68.65.Cd Superlattices

1 Introduction

The vibrational characteristics of multilayered structures
are of both fundamental and practical interest. Optical
spectroscopies are suitable for the investigation of semi-
conductor microstructures, and can also be used to char-
acterize the quality of the heterostructures, in particular
the details of the interfaces, for a review see reference [1].
In order to explain the main experimental results, differ-
ent models have been developed to describe the phonon
dispersion curves. These models range from simplified lin-
ear chain models [2] to the most elaborate ones based on
ab initio local-density calculations [3]. Most optical spec-
troscopies are subject to rather stringent selection rules
which arise from wave-vector conservation. In fact, the
phonon created or annihilated must have a wave vector
of magnitude close to zero, i.e., near the center of the
Brillouin zone. For this reason, phenomenological long-
wavelength models are successful when compared with ex-
perimental results.

Phenomenological long-wavelength models have been
widely employed with good results even for relatively short
wavelengths. Their mathematical simplicity helps to de-
rive analytical results and visualize the physics of differ-
ent problems. Acoustic phonons have been widely stud-
ied [4–6] with the help of the Christoffel equations [7].
For optical phonons in polar materials a long-wavelength
model has been proposed [8] and successfully applied to
heterostructures [9]. As a particular case of [8], we can
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study phonons in nonpolar semiconductors when the cou-
pling constant between the electric field and the atomic
oscillations vanishes [10]. This formulation has allowed the
study of high symmetry phonons in quantum wells (QWs)
and superlattices (SLs) in strained and unstrained mate-
rials, and the interface modes due to the presence of alloys
at the interface. Also the influence of the inherent electric
field in the vibrational properties of mixed polar-nonpolar
heterostructure can be predicted by combining these two
approaches [11].

As explained in [8] both models [8,10] contain the
Christoffel equations for acoustic phonons as a particu-
lar case with the right selection of the input parameters.
We showed in [12] that the model for optical phonons is
a counterpart of that corresponding to acoustic phonons;
and considering both together the best results comparing
with other methods and experimental data are obtained.
In the present paper both acoustic and optical phonons
in nonpolar heterostructures are studied employing the
same long-wavelength approach of reference [10]. We ana-
lyze here the coupled longitudinal and transverse atomic
oscillations.

Note that in previous works only analytical expressions
for uncoupled modes could be reported [10]. The coupled
modes have been studied only indirectly through phonon
tunneling [12], exploiting the relation between transmis-
sion and reflection characteristics and phonon properties.
Starting from this model to study phonons in heterostruc-
tures for arbitrary directions of the reciprocal space two
traditional approaches are available: the secular equation
and the transfer matrix method. Both have the advantage
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that the size of the matrix involved does not increase
with the size of the system, as is characteristic of the dis-
crete phenomenological models –which are also more com-
plex. Fortunately continuous models also reproduce fea-
tures for short wavelengths and small systems –i.e. short
period superlattices (SL) and short length quantum wells
(QWs)– at least in some high symmetry directions. Re-
cently, the eigenmodes in SLs have been studied through
linear chains, taking the force constants from ab initio cal-
culations [3], with excellent results. But, to the best of our
knowledge this ab initio treatment is developed only for
high symmetry directions.

We will show that it is possible to obtain explicit dis-
persion relations for arbitrary directions of the Brillouin
zone in the frame of the continuous model, by employing
the transfer matrix formalism. In this way any phonon
mode is calculated without additional effort with respect
to high symmetry directions. The paper is devoted to
study the physics of the less symmetric modes. To the best
of our knowledge these results have not been obtained in
any previous study [13].

Some nanostructures made up of nonpolar materials
with recent scientific interest are studied in this paper,
namely isotopic short period Ge SLs and QWs [14], and
short period Si/Ge SLs [15]. Isotopic Ge SL means two
layers of enriched Ge isotopes repeated periodically. The
reason for this selection is the different phonon proper-
ties involved. The phonon dispersions of two isotopic en-
riched Ge bulk materials overlap over a large frequency
range (but confined optical modes are still present), and
strain effects are not important. On the other hand, in
the Si/Ge structures the mechanical vibrations character-
istic of each constituent material would not practically
penetrate the adjoining slabs. Also homogeneous strain
induced by lattice matching to the substrate must be
considered.

In the next section the fundamentals of the phe-
nomenological continuum long-wavelength model are
briefly described, and the explicit dispersion relations for
coupled modes valid for any direction of the wavevector
are found. The physical nature of the phonon modes is
discussed in Section 3 for the systems of interest and con-
clusions are presented in Section 4.

2 Phenomenological continuum
long-wavelength model

The analytical setup of the phenomenological model can
be found in [10,12]. The equations of motion are consti-
tuted by three coupled differential equations; which are

obtained from a Lagrangean density that is postulated in
the spirit of continuous media. The boundary conditions,
continuity of the displacement field u and the “stress” ten-
sor σ, are derived straightforwardly from the equations of
motion. In a similar way to [8,16] the orthonormality and
completeness of the solution space could be proved. An
energy balance equation for the energy density flux was
found in [12].

A cubic symmetry is sufficient to study the materi-
als here considered [10]. For the solution space of layered
structures –where the isotropy in the plane parallel to the
growth direction is assumed and the equations of motion
are Fourier transformed in that plane– is found [10] that
the transverse horizontal (TH) solution is decoupled from
the oscillations in the directions y and z -z is the growth
direction. Then, transverse (T) and longitudinal (L) inde-
pendent solutions are coupled. For the transverse wavevec-
tor κ = 0 this subspace is also decoupled into purely
longitudinal and transverse vibrations. The decoupled so-
lutions have been intensively studied in [10]. We shall con-
centrate on finding an analytical expression for the disper-
sion relation of the coupled modes. The secular equation
for layered heterostructures has been discussed in [10] –
although it was not reported explicitly. We present it in
the Appendix A in order to compare with the simpler ex-
pressions developed below. We should emphasize that the
order of the secular matrix (4×4 for the QW and 8×8 for
the SL) is independent of the linear size of the system. This
is advantageous compared with other phonon models for
which the order of the secular equation increases with the
dimension of the system. Also the long-wavelength model
has proved useful not only for long period structures but
surprisingly for short period ones [8–10,12].

The relevant information and matrices related to the
transfer matrix method –which match u and σ in differ-
ent layers– are straightforward and presented explicitly in
reference [12]. We write below only the transfer matrix for
the SL for the sake of completeness in the presentation:

TSL = tbtw, (1)

where
tj (dj) = hj (dj)h−1

j (0) , (2)

j = w, b label the well and barrier material of width dj

respectively, and
see equation (3) above,

Bj = ρjβ
2
Tj , (4)

Dj = ρj

(
κ2
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β2

Lj − 2β2
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+ β2

Ljk
2
Lj

)
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2
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(
κ2 − k2
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)
, (6)
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kLj(Tj) =

√√√√ω2
Lj(Tj)

(Γ ) − ω2

β2
Lj(Tj)

− κ2. (7)

The elements of the matrix TSL, named Tij in the fol-
lowing, are easily obtained and handled, but given their
extension they are not reported here.

With the help of the Bloch theorem we can calculate
the dispersion relation and eigenvectors of the infinite SL
writing the secular equation in the form

(
I4eiqd − TSL

)
W = 0, (8)

where W represents the fields u and σz = σ · êz, written
in the form of column matrix, is

W (z) = ut

σz
, (9)

where q is the SL wavevector, d = dw +db is the SL period
and I4 is the four order identity matrix.

We shall write the SL dispersion relation in a more
compact form. For this it is convenient to rewrite the ma-
trices of (8) in the form of 2 × 2 block matrices, i.e.

TSL =

(
T1 T2

T3 T4

)
, W =

(
W1

W2

)
. (10)

Replacing these relations in (8) we find two matricial
equations for W1 and W2. We combine both equations and
obtain after some transformations

[
I2eiqd + Qe−iqd − P

]
W1 = 0, (11)

where

P = T1 + T2T4T
−1
2 , (12)

Q = T2T4T
−1
2 T1 − T2T3. (13)

The determinant of (11) is set equal to zero in
order to obtain a non trivial solution. In the cal-
culations we should note that the diagonal (non-
diagonal) elements in the submatrices Ti are pure real
(imaginary). This property guarantees that the expres-
sion to be presently obtained is real. The property
det(Q) = det(TSL) = 1 is also employed –The iden-
tity det(TSL) = det(hb) det(h−1

b ) det(hw) det(h−1
w ) and

the fact that det(hi(z)) is independent of z, as could be
seen from (3), lead to det(TSL) = 1. After a straight-
forward algebra the following dispersion relation is found
from the real part of (11)

cos (qd) =
(
B ±

√
B2 − 16C + 32

)
/8, (14)

where

B = tr(P ) + tr
(
PQ−1

)
, (15)

C = tr(Q) + det(P ). (16)

The imaginary part of (11) leads to the additional con-
dition tr(P ) = tr(PQ−1), which simplifies the mathemat-
ical expression of B. The study shows that this equality
does not imply new physical conditions for the vibrational
modes neither the appearance of additional modes with
particular characteristics. It is also possible to simplify
the analytical expression of C after an straightforward al-
gebra. We obtain finally for B and C

B = 2 tr(P ), (17)
C = ∆ = ∆12 + ∆13 + ∆14 + ∆23 + ∆24 + ∆34, (18)

where

∆ij = det

(
Tii Tij

Tji Tjj

)
, (19)

and Tlk are the elements of the matrix TSL (1).
The expression (14) is much simpler than the tradi-

tional 8×8 secular, given in the appendix matrix (25), due
to the fact that at the end of the calculations B and C
are reduced to elementary expressions of some elements
of matrix TSL. All the terms are real, avoiding the te-
dious diagonalization of the real and imaginary parts of
the secular matrix. This simplifies considerably the nu-
merical work. Equation (14) is similar to the dispersion
relation of the decoupled modes and the results of [10]
for uncoupled modes are recovered for κ = 0. The cou-
pled modes are now characterized according to the +/−
sign in front of the radical. We shall label these in the
following as + and − modes respectively. This equation
is numerically discussed below. In a similar way it is pos-
sible to write a more compact dispersion relation for the
QW case.

3 Numerical results and discussion

3.1 Isotopic germanium superlattices

We carefully compared the numerical results using the sec-
ular equation (25) and the explicit dispersion relation (14)
and did not find differences for the whole range of wave
vectors studied. The speed of the computation experi-
ences a significant increment for the later treatment. It
is also easier to detect the zeros of the dispersion rela-
tion given the considerable simplification of the analytical
expressions.

For the 70Ge (74Ge) atom we have used the same
parameters as in [10,12,17]. For acoustic phonons we
rescale by the isotope mass the sound velocities for natu-
ral Ge given in the next subsection. We shall study here
the symmetric (70Ge)4- (74Ge)4 SL reported by other au-
thors [14].

The dispersion relations in some interesting regions
are presented in Figure 1. For the [001] direction in
Figure 1c –where pure longitudinal (transverse) modes are
represented with solid (dashed) lines– we showed in [12]
that studying at the same time the optical and acoustic
phonons the results of the calculations are improved. A
good coincidence with other theoretical and experimental
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Fig. 1. Phonon dispersion relation for the (70Ge)4-(
74Ge)4 SL.

Frequency and wavevectors in cm−1. With solid (dashed) lines
we represent in (a) and (b) the + (−) modes, and in (c) the
pure L (T) modes. The TH branches are represent with dashed
lines. The SL wavevector q in (a) and (c) is normalized to
unity (π/d, d is the SL period). (a) Direction ∆U . For the
fixed value κ = 4× 107 cm−1 the phonon branches are plotted
as functions of q. The TH modes are not shown. (b) Uncou-
pled and TH modes as functions of the transverse wavevector
κ [×107 cm−1] for q = 0, direction [010]. The modes for a
(70Ge)4 QW, represented with dotted lines, are indistinguish-
able from the topmost superlattices modes, as expected. (c)
Dispersion relation in the direction [001] for L and double de-
generate T modes. See text for details.

results [14,17] is found for the whole Brillouin zone in this
direction (i.e. independently of the wavelength).

The phonon dispersion in the direction Γ∆ of the
Brillouin zone (q = 0) is presented in Figure 1b. To the
best of our knowledge there is no calculations of phonon
modes in isotopic SL available for κ �= 0, but the follow-
ing expected qualitative facts help to validate our results.
The branches are plotted as function of κ from κ = 0 to
κ = 4 × 107 cm−1, i.e. about 1/3 of the Brillouin zone
(1.11 × 108 cm−1). The selected region is about the same
order of magnitude as in Figure 1c, where excellent re-
sults were obtained. The acoustic and optical curves do
not overlap. In the next subsection the atomic oscillations
for a Si/Ge SL in the same direction [010] are satisfacto-

rily compared with other theoretical results. Both systems
show the same general trends.

Figure 1b shows both TH and coupled vibrations.
The longitudinal modes and the degenerate T modes
in q, κ = 0 retain almost the same character for κ �= 0.
In particular the TH (represented with dashed lines) and
coupled quasi transverse modes are practically undistin-
guished. We also note a strong influence in the behavior of
all these modes of the bulk dispersion relation, given for
the parabolic (linear) behavior of the optical (acoustic)
branches. The reason for these trends is that the oscilla-
tions with longest wavelength do not “detect” the change
in symmetry in the grown direction –the cubic symmetry
of the host material is replaced for the orthorhombic sym-
metry of the SL. The branches are less dispersive than in
the direction ΓZ.

We also studied a 70Ge QW with 74Ge barriers. The
frequency values for the modes confined in the 70Ge
QW are plotted in Figure 1b with dotted lines. These
curves practically overlap with the topmost optical modes
in the SL as for κ = 0 (see the discussion about
in [10,14,17]), and are not further discussed here.

The branches of coupled oscillations are represented in
Figure 1b according to the modes of equation (14). The
dashed (solid) lines characterize the + (−) modes. The
same criterion is used in Figure 1a, where the dispersion
relation is plotted in the lower symmetry direction ∆U .
For Figure 1a we started from the ∆ point in Figure 1b
(κ = 4 × 107 cm−1) and calculated the phonon modes
as a function of the SL wavevector q. It is interesting to
note that the + (−) modes retain the same character in
the direction Γ∆ and change in the direction ∆U –where
some anticrossings as a function of the SL wavevector q
appear. This reflects the fact that the + (−) modes are re-
lated to the SL symmetry. The + (−) modes are a proper
linear transformation of the longitudinal and transverse
independent solutions that diagonalize in blocks the SL
matrix. For the uncoupled modes of Figure 1c it is pos-
sible to choose between the L and T modes (more illus-
trative in this situation) and the + (−) modes. In the
last case the + (−) modes change continuously from one
type to another as a function of q, i.e. similar to Figure 1a
but avoiding the anticrossings due to the reduction in the
symmetry that for this latter direction is observed.

Figure 1a does not show the TH modes for the sake of
clarity. These modes do not present anticrossings, given
their uncoupled character and in general behave like the
uncoupled modes of Figure 1c.

In Figure 1a the phonon branches are in general less
dispersive than for κ = 0 in Figure 1c, especially for the
coupled acoustic vibrations. This implies a reduction in
the average group velocity and consequently in the phonon
thermal conductivity, as pointed out in [12].

The r.h.s. of (14) as a function of cos(qd) could be
plotted in the interval [1,−1] –corresponding to the values
of q in the interval [0, π/d]– for a fixed value of κ. This
kind of plot helps to obtain a quick view of the phonon
modes for different values of κ as in Figure 1a.
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The calculations of the present section with other
3D phenomenological discrete models [18] would imply a
costly computation even compared with the diagonaliza-
tion of the secular matrix our approach.

3.2 Strained Si/Ge superlattices

The purpose of this section is to study the phonon modes
of short period strained Si/Ge SLs. The lattice constants
and phonon frequencies of the strained bulk materials are
employed as input parameters in the calculations (Tab. I
of Ref. [10]). Matching to a Si0.5Ge0.5 substrate in the ho-
mogeneous strain configuration has been considered. For
the Si acoustic modes we used the bulk sound velocities
vL = 8.34×105 cm s−1 and vT = 5.90×105 cm s−1. For the
Ge acoustic modes we fitted the bulk linear dispersion to
a larger interval of the Brillouin zone in order to improve
the results of the calculations, i.e. vL = 4.45× 105 cm s−1

and vT = 2.50×105 cm s−1. In Figure 2 the dispersion re-
lation in the directions [001] and [010] for a (Si)8-(Ge)8 SL
matched to a Si0.5Ge0.5 substrate is presented. With solid
(dashed) lines we represent the modes that are pure L (T)
in κ = 0. This structure could be compared with the
strain-symmetrized SL intensively studied experimentally
and theoretically with reliable first principle calculations
in [15]. We find a good coincidence with our calculations.
The phonons in the direction [001] was discussed in [10].
We limit our results in the Γ∆ direction to 1/4 of the
Brillouin zone (1.14× 108 cm−1) for the same reasons ex-
plained above. We did not find in the literature reports
for other directions of the reciprocal space, although dif-
ferent 3D approaches have been set up, e.g. [18].

4 Conclusions

The phenomenological long-wavelength approach for
atomic vibrations in nonpolar semiconductor heterostruc-
tures of reference [10] is studied both analytically and nu-
merically for arbitrary directions of the reciprocal space
without additional efforts respect to the high symmetry di-
rection. The advantages compared with other theoretical
models –given by the allowed analytical treatment and the
facilities in the numerical computation– are shown. A sim-
ple expression for the dispersion relation in SL is found. It
distinguishes between two different kinds of phonon modes
related to the SL symmetry.

Numerical results for unstrained isotopic Ge SLs and
QWs and strained Si/Ge SLs are presented. For isotopic
SLs there is no other work to compare the phonon modes
for the transverse wavevector κ �= 0, but we obtain the ex-
pected results. We compare the results for a (Si)8-(Ge)8 SL
matched to a Si0.5Ge0.5 substrate with a sophisticated
ab initio approach, and find a good agreement.

The wave nature of phonons was invoked in the past
extrapolating, to the case of phonons, some mathematical
developments for electrons [1]. The similarities between
the dispersion relation for long wavelength phonons and

Fig. 2. Dispersion relation for the (Si)8-(Ge)8 SL matched
to a Si0.5Ge0.5 substrate in the direction [001]. The optical
and acoustic L and T modes are plotted in the directions ΓZ
and Γ∆. With solid (dashed) lines we represent the modes that
are pure L (T) in κ = 0. See text for details.

the envelope functions for electrons was shown in refer-
ence [10]. The results obtained in this paper could bee
easily applicable in other problems where coupled wave
solutions are found. Also generalization to include more
coupled solutions could be possible.

We acknowledge F. Comas for clarifying discussions.

Appendix A: Elements of the secular matrix
for the SL

The SL secular equation for the coupled modes can be
written in the matrix form [10]:

det
(

A B
C D

)
= 0. (25)

The order of the submatrices A, B, C and D is 4 × 4.
The diagonal submatrix A (D) contains only transverse
(longitudinal) magnitude for κ = 0. On the other hand the
non-diagonal submatrices C and B are responsible for the
L-T mixing for κ �= 0. The well (of width dw) and barrier
(of width db) materials are label as w and b respectively d
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A =




kTwSTw −ikTwCTw kTbSTb ikTbCTb

ρwβ2
TwrwCTw iρwβ2

TwrwSTw −ρbβ
2
TbrbCTb iρbβ

2
TbrbSTb

−eiqdkTwSTw −ieiqdkTwCTw −kTbSTb ikTbCTb

eiqdρwβ2
TwrwCTw −ieiqdρwβ2

TwrwSTw −ρbβ
2
TbrbCTb −iρbβ

2
TbrbSTb


 ,

(21)

B =




−SLw iCLw −SLb −iCLb

−2bwT kLwCLw −2ibwT kLwSLw 2bbT kLbCLb −2ibbT kLbSLb

eiqdSLw ieiqdCLw SLb −iCLb

−2eiqdbwT kLwCLw 2ieiqdbwT kLwSLw 2bbT kLbCLb 2ibbT kLbSLb


 ,

(22)

C =




iCTw −STw −iCTb −STb

−2ibwT kTwSTw −2bwT kTwCTw −2ibbT kTbSTb 2bbT kTbCTb

ieiqdCTw eiqdSTw −iCTb STb

2ieiqdbwT kTwSTw −2eiqdbwT kTwCTw 2ibbT kTbSTb 2bbT kTbCTb


 ,

(23)

D =




ikLwCLw −kLwSLw −ikLbCLb −kLbSLb

−iρwtwSLw −ρwtwCLw −iρbtbSLb ρbtbCLb

ieiqdkLwCLw eiqdkLwSLw −ikLbCLb kLbSLb

ieiqdρwtwSLw −eiqdρwtwCLw iρbtbSLb ρbtbCLb


 , (24)

and q are the superlattice period and wave vector respec-
tively. The explicit expression for the submatrices are as
follows

see equations (21–24) above,

where

SLi(Ti) = sin
(

kLi(Ti)di

2

)
, CLi(Ti) = cos

(
kLi(Ti)di

2

)
,

(25)

ri =
(
k2

Ti
− κ2

)
, bLi(Ti) = ρiβLi(Ti),

ti =
(
κ2
(
β2

Li
− 2β2

Ti

)
+ β2

Li
k2

Li

)
,

and i = w, b.
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